Errata for ACTEX Study Manual for CAS Exam S (Spring 2016 Edition)

February 26, 2016

• February 26, 2016: Here is the solution to Example 3.1.4 on page 173.

Solution. For interest rates to decrease from year 2003 to 2004, there are only two possible events:

1. Interest rates decrease from year 2002 to 2003, and further decrease from year 2003 to 2004. The probability is

$$(1 - 0.20)^2 = 0.64.$$

2. Interest rates increase from year 2002 to 2003, then decrease from year 2003 to 2004. The probability is

$$(0.20)(1 - 0.25) = 0.15.$$

The total probability is 0.64 + 0.15 = 0.79. (Answer: B)

• February 25, 2016: Problem 10.7.4 and its solutions on pages 793 and 794 should be amended as follows:

Problem 10.7.4. (Predicted mean using the canonical link) A GLM is used to model claim size. You are given the following information about the model:

- \triangleright Claim size follows a Gamma distribution.
- \triangleright The canonical link function is used.
- \triangleright Model output:

Variable	\hat{eta}
Intercept	10.52
Age	-0.12
Gender - Female	
Gender - Male	-2.63

Calculate the estimated mean claim size for a 30-year-old female.

- A. Less than 0.1
- B. At least 0.1, but less than 0.2
- C. At least 0.2, but less than 0.3
- D. At least 0.3, but less than 0.4
- E. At least 0.4

Ambrose's comments: This question challenges you by not directly telling you the link function used – you need to find (or recall, if you can remember) the canonical link function first!

Solution. The canonical link function for the gamma distribution is the inverse link, $g(\mu) = 1/\mu$ (see also Problem 11.3.8). The explanatory variables corresponding to a 30-year-old female are $x_0 = 1$ (intercept), $x_1 = 30$ (30-year old) and $x_2 = 0$ (female). The linked mean is estimated to be

$$\hat{\mu} = 10.52(1) - 0.12(30) - 2.63(0) = 6.92.$$

With the inverse link, the estimated mean claim size is the inverse of the linked mean, or

$$1/6.92 = 0.1445$$
. (Answer: B)

• January 23, 2016: In the solution of Problem 1.4.12 on page 107, the wind claims that are covered by the reinsurance contract form a Poisson process with a rate of $2e^{-250,000/200,000} = 2e^{-1.25}$ per year. The final answer is

Var
$$[N(1)] = 700e^{-50/7} + 2e^{-1.25} = 1.1264$$
. (Answer: E)